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Abstract. The majority of anthropogenic CO2 emissions are attributable to urban areas. While1

the emissions from urban electricity generation often occur in locations remote from consumption,2

many of the other emissions occur within the city limits. Evaluating the effectiveness of strategies3

for controlling these emissions depends on our ability to observe urban CO2 emissions and attribute4

them to specific activities. Cost effective strategies for doing so have yet to be described. Here we5

characterize the ability of a prototype measurement network, modeled after the BEACO2N network,6

in combination with an inverse model based on WRF-STILT to improve our understanding of urban7

emissions. The pseudo-measurement network includes 34 sites at roughly 2 km spacing covering8

an area of roughly 400 km2. The model uses an hourly 1×1 km2 emission inventory and 1×19

km2 meteorological calculations. We perform an ensemble of Bayesian atmospheric inversions to10

sample the combined effects of uncertainties of the pseudo-measurements and the model. We vary11

the estimates of the combined uncertainty of the pseudo-observations and model over a range of 2012

ppm to 0.005 ppm and vary the number of sites from 1 to 34. We use these inversions to develop13

statistical models that estimate the efficacy of the combined model-observing system at reducing14

uncertainty in CO2 emissions. We examine uncertainty in estimated CO2 fluxes at the urban scale,15

as well as for sources embedded within the city such as a line source (e.g., a highway) or a point16

source (e.g., emissions from the stacks of small industrial facilities). We find that a dense network17

with moderate precision is the preferred setup for estimating area, line, and point sources from18

a combined uncertainty and cost perspective. The dense network considered here could estimate19
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weekly CO2 emissions from an urban region with less than 5% error, given our characterization of20

the combined observation and model uncertainty.21

1 Introduction22

Carbon dioxide (CO2) is an atmospheric trace gas and the single largest anthropogenic radiative23

forcer, with a radiative forcing of 1.82 W m−2 since preindustrial times (IPCC, 2013). CO2 has24

increased from 280 ppm in preindustrial times to greater than 400 ppm in the present, largely due25

to changes in fossil fuel emissions. Over 70% of these fossil fuel CO2 emissions in the United26

States (US) are attributable to urban areas (EIA, 2015; Hutyra et al., 2014). As such, quantifying27

and monitoring the emissions from urban areas is crucial to strategies for reducing future increases28

in CO2.29

Numerous studies have performed top-down estimations of CO2 emissions using observations30

from urban surface monitoring networks of various sizes (e.g., Gratani and Varone, 2005; McKain31

et al., 2012; Newman et al., 2013; Lauvaux et al., 2013; Breon et al., 2015; Turnbull et al., 2015).32

However, it’s not immediately clear how many sites are necessary to monitor the emissions from an33

urban area. Kort et al. (2013) found that a surface monitoring network would need at least 8 sites34

operating for 8 weeks to accurately estimate CO2 emissions in Los Angeles. Yet most current urban35

monitoring networks have fewer than 8 sites but operate for much longer than 8 weeks. For example,36

Gratani and Varone (2005) used a single site in Rome, Newman et al. (2013) used a single site in37

Los Angeles, Lauvaux et al. (2013) used two sites in Davos, Switzerland, McKain et al. (2012) used38

a network of 5 sites in Salt Lake City, and Breon et al. (2015) used 5 sites in Paris. Recent work39

from Turnbull et al. (2015) employed a denser network of 12 sites in Indianapolis.40

This issue is further complicated by bias and noise in both the measurements and the modeling41

framework. The combined model and measurement error is known as the model-data mismatch error42

(hereafter referred to as the “mismatch error”). Current monitoring networks use a mix of instru-43

ments and approaches to calibration with resulting variations of capital and operating costs, network44

precision, and potential instrument bias. Monitoring networks located in regions with complex orog-45

raphy are challenging for atmospheric transport calculations, making it more difficult to determine46

the dispersion from sources.47

The tradeoff between measurement network density and mismatch error has yet to be charac-48

terized. Understanding these tradeoffs is crucial to reducing the uncertainty in emissions from ur-49

ban regions and to developing cost-effective urban monitoring networks. Here we present a high-50

resolution inventory of CO2 fluxes and a numerical model that relates atmospheric observations to51

high resolution surface fluxes. We then use this inventory and model in a series of observing system52

simulation experiments (OSSEs) to investigate the tradeoff between reductions in the mismatch error53

and increases in the measurement network density. We develop statistical models to characterize this54
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relationship for different types of sources in the San Francisco Bay Area, identify limiting regimes,55

and recommend future observing strategies.56

2 Constructing a high resolution regional CO2 inventory57

McDonald et al. (2014) demonstrated that 1×1 km2 spatial resolution is necessary to resolve the58

gradients in urban CO2 fluxes from highways. However, most of the existing CO2 anthropogenic59

inventories are not available at this resolution. For example, EDGAR (European Commission, 2011)60

and VULCAN (Gurney et al., 2009) are only available at 0.1◦×0.1◦ and 10×10 km2, respectively.61

A notable exception is the Odiac fossil fuel CO2 inventory (Oda and Maksyutov, 2011) which is62

based on satellite-observed nightlight data and available globally at 1×1 km2 resolution. High reso-63

lution fossil fuel CO2 emissions are available for select cities and sectors such as Paris through the64

AirParif inventory (Breon et al., 2015, http://www.airparif.asso.fr/en/index/index) and Indianapo-65

lis, Los Angeles, Salt Lake City, and Phoenix through the HESTIA project (Gurney et al., 2012,66

http://hestia.project.asu.edu/); three recent studies (Gately et al., 2013; McDonald et al., 2014; Gately67

et al., 2015) developed high resolution CO2 emissions from vehicular traffic.68

The Bay Area Air Quality Management District (BAAQMD) provides detailed county-level CO269

emissions information for San Francisco and California’s Bay Area (Mangat et al., 2010). The70

BAAQMD found that the transportation sector accounted for 36% of the Bay Area anthropogenic71

emissions, industrial and commercial for 36%, electricity for 16%, residential fuel usage for 7%,72

off-road equipment for 3.0%, and agriculture for 1%. The BAAQMD also reports CO2 emissions73

for 4,375 point sources in the Bay Area. We geocode these point sources based on the addresses pro-74

vided by the BAAQMD. These point sources capture the emissions from the industrial, commercial,75

and electricity sectors. We map residential fuel usage to population using block level population76

data from the 2010 US Census and apply a temporal temperature scaling based on Deschłnes and77

Greenstone (2011); the resulting temporal scaling effect is small due to the temperate climate in the78

East Bay region of the SF Bay Area.79

Here we use the traffic CO2 emissions from the fuel-based inventory for vehicle emissions (FIVE)80

developed by McDonald et al. (2014). The FIVE traffic CO2 inventory provides a representative81

week of hourly CO2 emissions for San Francisco and other nearby Bay Area cities at 10 km, 482

km, 1 km, and 500 m resolution. The FIVE inventory is constructed by partitioning CO2 emissions83

using state-level fuel data to individual roads with road-specific traffic count data and temporal pat-84

terns from weigh-in-motion data. In this manner, CO2 emissions from the FIVE inventory will be85

consistent with state and national CO2 budgets and can easily be scaled to different years.86

Combining the industrial, commercial, electricity, residential, and traffic emissions account for87

95.8% of the anthropogenic CO2 emissions in the Bay Area. We do not have high resolution proxy88

data for the off-road equipment or agriculture sectors in the Bay Area and have chosen to assume89
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their contributions are smaller than the uncertainty in the total budget; therefore we neglect these90

sectors in the construction of our inventory.91

CarbonTracker CT2013B (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/; Peters et al., 2007)92

provides 3 hourly fossil fuel, ocean, biogenic, and fire CO2 fluxes at 1◦×1◦ resolution. These fluxes93

are optimized to agree with atmospheric CO2 observations. We regrid these fluxes to 1×1 km294

spatial resolution and use the fire, ocean, and biogenic sectors to account for our natural fluxes.95

Fig. 1 shows snapshots of the CO2 fluxes from our inventory at 4 different times of day and96

the a-temporal fluxes from EDGAR v4.2 FT2010 (European Commission, 2011). From Fig. 1 we97

can see the inventory clearly resolves the large CO2 gradients from highways, confirming that 1×198

km2 spatial resolution is sufficient to resolve urban CO2 fluxes from highways. The bottom panel99

of Fig. 1 shows a time series of Bay Area CO2 fluxes broken down by source. The diurnal cycle100

in our inventory is largely driven by the traffic emissions with modest uptake from the biosphere101

during the middle of the day. Other anthropogenic sources were assumed to have a negligible diurnal102

cycle (Nassar et al., 2013). In what follows, we use EDGAR as the prior and the high spatio-temporal103

resolution inventory as the “truth”.104

[Fig. 1 about here.]105

3 The Berkeley Atmospheric CO2 Observation Network (BEACO2N)106

The Berkeley Atmospheric CO2 Observation Network (“BEACO2N”, see http://beacon.berkeley.edu)107

was founded in 2012 as a web of approximately 25 carbon dioxide sensing “nodes” stationed atop108

schools and museums in the Oakland, CA metropolitan area (see Table 1). With sensors installed on109

an approximately 2 km square grid, BEACO2N is the only surface-level (3 to 130 m a.g.l.) green-110

house gas monitoring system with roughly the same spatial resolution as the emissions inventories111

described above. Each node requires only a standard, 120V power source and is sited on pre-existing112

structures based on voluntary, no-cost partnerships. The BEACO2N configuration therefore repre-113

sents a reasonable expectation and is one model for future monitoring networks aimed at constraining114

CO2 fluxes at neighborhood scales within an urban dome.115

[Table 1 about here.]116

BEACO2N’s unprecedented spatial density is achieved by exploiting lower cost instrumentation117

than has traditionally been utilized for ambient CO2 detection. The non-dispersive infrared (NDIR)118

absorption sensor used in each BEACO2N node (http://www.vaisala.com/en/products/carbondioxide/Pages/GMP343.aspx)119

has been seen to possess adequate sensitivity to resolve diurnal as well as seasonal phenomena rele-120

vant to urban environments (Rigby et al., 2008) and costs one to two orders of magnitude less than121

the commercial cavity ring-down instruments commonly used in other networks. However, the low-122

cost NDIR sensor is more susceptible to factors such as temporal drift and environmental instability123
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that can negatively impact data quality. This trade-off between mismatch error and network density124

is explored below.125

4 Observing system simulation experiments126

CO2 concentrations were simulated at 34 sites in the BEACO2N network with the Stochastic Time-127

Inverted Lagrangian Transport (STILT) model (Lin et al., 2003), coupled to the Weather Research128

and Forecasting (WRF) meso-scale meteorological model run at 1×1 km2 grid resolution (WRF-129

STILT; Nehrkorn et al., 2010). WRF-STILT computes footprints (∆ CO2 per surface flux, or ppm130

per µmol·m−2·s−1) for each observation that relate the CO2 fluxes (x; an m× 1 vector) to the131

observations (y; an n×1 vector):132

y = Hx (1)133

Each row of the n×m Jacobian matrix (H = ∂y/∂x) is a reshaped footprint. Fig. 2 shows the134

location of the sites and the average network footprint for Sept 15 to 22.135

[Fig. 2 about here.]136

Here we use our high resolution CO2 inventory (xa; an m×1 vector) to generate synthetic obser-137

vations (ya; an n×1 vector):138

ya = Hxa +ε (2)139

where ε is an n×1 vector of normally distributed noise with mean εb and diagonal covariance matrix140

R: ε∼N (εb,R). Our base case inversion assumes the mean bias is zero: εb = 0. We evaluate the141

sensitivity to this assumption in Section 6 and Supplemental Section S5. These synthetic observa-142

tions can then be used in a Bayesian inference framework to estimate the optimal CO2 fluxes (c.f.143

Rodgers, 2000). Assuming the prior and likelihood distributions are Gaussian gives us a closed-form144

solution for the posterior CO2 fluxes:145

x̂ = xb +(HB)T (
HBHT +R

)−1(
ya−Hxb

)
(3)146

where xb is an m×1 vector of prior CO2 fluxes, comprised of a coarse (10×10 km2) a-temporal147

EDGAR v4.2 FT2010 anthropogenic CO2 inventory and natural fluxes from CarbonTracker CT2013B,148

regridded to 1×1 km2. B is the m×m prior error covariance matrix. The prior error covariance149

matrix can be expressed as a Kroenecker product (cf. Meirink et al., 2008; Singh et al., 2011; Yadav150

and Michalak, 2013) of temporal and spatial covariance matrices: B = D⊗E where D is the tem-151

poral covariance matrix and E is the spatial covariance matrix. The B matrix has an uncertainty of152

100% at the native resolution and the spatial and temporal covariance matrices are fully populated153

(see Supplemental Section S2 for more details).154
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We do not explicitly represent the individual error terms contributing to the R matrix (instrument155

error, model error, and representation error). Instead, we have assumed that the R matrix is diagonal156

and can be characterized by a single parameter: the total mismatch error (σm; R = σ2
mI), which157

represents the combined effects of the different error components.158

Fig. 3 shows an example of the estimated CO2 fluxes. We can see that the posterior fluxes cap-159

ture more of the spatial variability in the CO2 fluxes than the prior fluxes in the region where the160

network is deployed. We find substantial improvements in the diurnal cycle (see panel d). Previ-161

ous work has used the posterior covariance matrix (Q =
(
HT R−1H+B−1

)−1
), averaging kernel162

matrix (A = I−QB−1), and the degrees of freedom for signal (DOFs = tr(A)) as metrics to eval-163

uate the information content of different observing systems (e.g., Kort et al., 2013; Wu et al., 2015).164

However, it is computationally infeasible to construct these m×m matrices for our application as165

m> 106 and storing them would require ∼36 Tb of memory (assuming double precision, dense166

matrices).167

Instead, we evaluate the efficacy of the posterior fluxes by taking the norm of the difference be-168

tween the posterior fluxes and the true fluxes: ||x̂−xa||2. We express this as a relative improvement169

by comparing the norm of the difference between the prior fluxes and the true fluxes:170

η= 1− ||x̂−xa||2
||xb−xa||2

(4)171

[Fig. 3 about here.]172

This error metric, η, was chosen as it has a similar form to the averaging kernel matrix but it also173

allows us to directly compare the posterior fluxes to the true fluxes. This relative error metric can174

be related to the flux error (see Supplemental Section S4). As such, we can use the error metric to175

evaluate the ability of the observing system to resolve three types of emission sources: (1) area, (2)176

line, and (3) point sources, by examining a subset of grid cells in the domain (see Section S3 for177

more details). The area source (AS) examined here is the East Bay urban dome (147 ± 55 tC hr−1;178

uncertainty is the 1-σ range of hourly fluxes from the high resolution inventory), the line source179

(LS) is Interstate 880 and the Bay Bridge (45 ± 20 tC hr−1), and the point sources (PS) are 4 large180

CO2 sources in the East Bay (9 ± 4 tC hr−1). For comparison, Salt Lake City emits ∼300 ± 50 tC181

hr−1 (McKain et al., 2012). The top panel of Fig. 2 shows these three source types.182

Fig. 4 shows the error in the estimated CO2 fluxes using the observations over a wide range of183

observing system scenarios. We vary the number of sites (ns) and mismatch error (σm) and perform184

an ensemble of 20 inversions for each combination to ensure the results are robust. Fig. 4 shows185

the mean error in the estimated CO2 fluxes for the area source, line source, and point source as a186

function of σm and ns. This figure represents the uncertainty in the estimated emissions at a given187

hour.188

[Fig. 4 about here.]189
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5 Simplified statistical models of error reduction190

We develop statistical models to predict the error reduction and quantify the importance of the differ-191

ent factors governing the error reduction. We tested all combinations of models with the following192

7 parameters (127 possible combinations):
√
σm,
√
ns, ln(σm), ln(ns), σm, ns, and a constant.193

These statistical models were evaluated using Akaike information criterion (AIC) and Bayesian in-194

formation criterion (BIC). The following statistical models were found to be best:195

η̂AS = β6
√
σm +β5

√
ns +β4 ln(σm)+β3 ln(ns)+β2σm +β0 (5)196

η̂LS = β6
√
σm +β5

√
ns +β4 ln(σm)+β3 ln(ns)+β2σm +β1ns (6)197

η̂PS = β6
√
σm +β5

√
ns +β4 ln(σm)+β2σm +β0 (7)198

All the regression coefficients (βi) in the statistical models yielded statistically significant (p <199

0.001) parameters based on F-tests (see the Supplemental Section S6 for the regression coefficients200

and model selection criterion).201

We find the
√
σm,
√
ns, ln(σm), and σm parameters in all three statistical models (Eq. 5–7).202

This dependence on
√
ns and

√
σm logically follows from the assumption of Gaussian errors in203

the derivation of the posterior CO2 fluxes (Eq. 3) and the basic properties of variance. These two204

parameters tend to be dominant and generally explain more than 50% of the variance. As such, we205

suspect that these two parameters are the most important and that other terms are capturing higher-206

order effects.207

These statistical models can also be used to define the regimes where increasing the number of208

sites in the observing system is more important and those where reducing the mismatch error is more209

important by taking the derivative of η̂ with respect to ns:210

∂η̂AS

∂ns
=

β5

2
√
ns

+
β3

ns
(8)211

∂η̂LS

∂ns
=

β5

2
√
ns

+
β3

ns
+β1 (9)212

∂η̂PS

∂ns
=

β5

2
√
ns

(10)213

From Fig. 4 we can see two distinct regimes: noise-limited and site-limited. Observing systems that214

lie above the ∂η̂/∂ns curve are in the the noise-limited regime where the error reduction is largely215

governed by the mismatch error in the observing system. Conversely, observing systems below the216

∂η̂/∂ns curve are in the the site-limited regime where the error reduction is largely governed by the217

number of sites in the observing system.218

The mismatch error is controlled by the instrument, representation, and model error. In the noise-219

limited regime reducing these errors will provide the greatest benefit. Whereas, in the site-limited220

regime the greatest benefit will come from increasing the number of sites in the observing system221

and there will only be marginal benefit from reducing the instrument, representation, and model222

error.223
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6 Discussion224

Three conclusions we can draw from Fig. 4 for California’s East Bay are:225

1. Achieving σm =1 ppm adds value. There is relatively little additional benefit to reducing226

mismatch error to 0.1 ppm, particularly for estimating line or point source emissions.227

2. At σm =1 ppm there is a benefit to increasing the number of sites, but this benefit increases228

slower than
√
ns.229

3. At σm =5 ppm there is little benefit from increasing the number of sites; reducing the noise230

would add more value.231

Our work is primarily focused on estimating hourly fluxes, however we can further reduce the232

uncertainty in our estimates by considering temporally averaged fluxes. Fig. 5 shows the error in233

our estimate of the area source emissions over various time-scales. We find the error in our estimate234

greatly decreases over the first 72 hours and agrees well with the error reduction predicted by the235

central limit theorem. This implies that our weekly-averaged emission estimate would be 10× better236

than our hourly emission estimate.237

[Fig. 5 about here.]238

6.1 Additional factors affecting observing system design239

We considered three additional factors that could adversely impact an observing system: (1) inver-240

sion domain size, (2) site-specific systematic biases, and (3) using only daytime observations.241

Our results are found to be largely insensitive to the inversion domain size (see Fig. S6). This is242

discerned through a set of sensitivity OSSEs with a reduced domain size. We find that inversions on243

the reduced domain were only marginally worse at reducing the error (∼ 1%) than inversions on the244

full domain (see Supplemental Section S5.1). This is due to the strong local signal in the footprint245

of the measurements (see bottom panel of Fig. 2). As such, the non-local emission sources do not246

adversely impact our ability to estimate urban emissions.247

Biases can adversely impact the observing system (see Fig. S7). To test the impacts of biases in248

the modeling-measurement framework, we repeated the OSSEs outlined in Section 4 but included249

a systematic bias. The bias was unique to each site and was drawn from a normal distribution250

(εb ∼N
(
0,σ2

b I
)
; σb = 1 ppm). There are three major findings from the OSSEs with systematic251

biases:252

1. Systematic biases become particularly problematic when the spread of the potential biases253

(defined here as σb) is larger than the mismatch error (σb >σm). This is because we have254

defined the observational error covariance matrix as: R = σ2
mI. However, if σb >σm with a255

dense observing system then the site-specific biases will artificially inflate the observational256
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error covariance matrix: R≈
(
σ2

m +σ2
b

)
I and the errors will be incorrectly characterized in257

the observing system. As long as σb<σm then R =σ2
mI and the characterization of the errors258

will be appropriate.259

2. Observing systems with more sites are generally less affected by site-specific systematic bi-260

ases. This is because observing systems with a small number of sites rely heavily on those few261

sites. An observing system with many sites is less reliant on a single site and the site-specific262

systematic biases act more like additional noise in the observing system.263

3. Systematic biases have a greater impact when estimating an area source than line and point264

sources. This is because an airmass sensitive to a line or point source will have a greater265

enhancement relative to the background compared to a diffuse area source, thus there is a266

larger signal-to-noise ratio for these sources and a systematic bias is less important.267

During the day, model calculations of the PBL height are more reliable leading to a temptation to268

omit the nighttime data from the analysis. However, emissions at night can be as much as 30% of269

the total and ignoring them makes estimates of urban emissions strongly dependent on prior assump-270

tions. Our observing system would be unable to correct the misrepresented nighttime emissions of271

our a-temporal prior without using nighttime observations. As a result, even our most optimistic272

observing system would have a systematic ∼50 tC hr−1 error (∼30%) in the estimated area source273

emissions due to the misrepresented nighttime emissions.274

6.2 Potential cost tradeoffs275

We consider two potential observing systems:276

1. “Network A” (ns = 25, σm = 1 ppm): A dense network with moderate-precision instruments.277

This network is similar to the BEACO2N network described in Section 3. We assume a cost278

of $5,000 per instrument giving a total cost of $125,000. This network is shown as a purple279

star in the left column of Fig. 4.280

2. “Network B” (ns = 3, σm = 0.1 ppm): A sparse network with of high-precision instruments.281

This network uses cavity-ring down instruments. We assume a cost of $50,000 per instrument282

giving a total cost of $150,000. This network is shown as a green star in the left column of283

Fig. 4.284

We note that the assumed mismatch error for these two potential observing systems is defined as the285

instrument error and assumes there is no contribution from model or transport errors.286

The cost for these two networks is comparable. From Fig. 4, we find that the sparse “Network B”287

is site-limited in all cases whereas the dense “Network A” is near the noise/site-limited boundary.288

Further, we find that the dense “Network A” has less error in the estimate of all source types in San289
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Francisco’s East Bay. Networks sitting exactly on the ridge line are at the optimal balance between290

precision and number of sites.291

6.3 The relationship between network density and transport error292

In this work we have treated transport error and the number of measurement sites as independent.293

However, in practice, there would be a relationship between the transport error and measurement294

network density. This can be understood with a thought experiment using two different observing295

systems to estimate emissions: a sparse network with a single site and an infinitely dense network296

(sites at each grid cell in our domain). Estimating emissions with the sparse network would require297

us to simulate the atmospheric transport with high fidelity if we are to reliably say anything about298

emissions upwind of our site. This is especially true for point sources. Any errors in the simulated299

atmospheric transport would adversely impact the estimated emissions, whereas the infinitely dense300

network could potentially neglect atmospheric transport and use data from only the local grid cell301

to estimate emissions. This is because the differential signal at each site would be largely gov-302

erned by the local emissions. Explicitly quantifying this relationship between transport error and303

measurement network density should be the focus of future work.304

7 Conclusions305

Understanding the factors that govern our ability to estimate urban greenhouse gas emissions are306

crucial to improving an observing system and reducing the uncertainty in emission estimates. Here307

we have quantitatively mapped the errors in CO2 emission estimates from different observing sys-308

tems for three different types of sources in California’s Bay Area: area sources, line sources, and309

point sources. Our results show that different observing systems may fall into noise or site-limited310

regimes where reducing the uncertainty in the estimated emissions is governed by a single factor;311

these regimes differ for the source types. Identifying the regime an observing system is in will help312

inform future improvements to the observing system. A number of prior urban CO2 experiments313

have defined as a goal, the understanding of emissions to less than 10% (e.g., Kort et al., 2013; Wu314

et al., 2015). We find that a BEACO2N-like network could achieve this accuracy and precision with315

1 week of observations, if the dominant source of error is instrument precision. This conclusion may316

motivate a re-examining of the conventional instrument quality-oriented design of CO2 observing317

systems, according to the stated goal of a given network.318
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Fig. 1. September 2013 CO2 fluxes from bottom-up inventories. Top row shows the fluxes in the Bay Area
(122.0357◦ – 122.7683◦W, 37.3771◦ – 38.2218◦N) at four representative hours (hour in local time). Right
panel shows the a-temporal EDGAR v4.2 FT2010 CO2 flux in the Bay Area. Bottom panel shows the total Bay
Area CO2 flux (black), traffic (orange), other anthropogenic (red), and natural (green) sources. Vertical gray
shading indicates the time slices plotted in the top and middle panels.
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Fig. 2. Top panel shows the location of the sites (black circles), the area source (blue region), the line source
(orange line), and point sources (red diamonds). Bottom panel shows the September 15 to 22 average footprint
for the 34 sites in the network, see Table 1 for a list of the sites. The bottom panel is the full domain used for
the inversion.
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Fig. 3. Example of estimated CO2 fluxes. Top row shows the average emissions from (a) the prior, (b) the
posterior, and (c) the true emissions. Panel (d) shows a time series of the emissions from the area source
with the prior (green), posterior (pink), and true emissions (black). Panel (e) shows the difference between the
posterior and the prior. Panel (f) shows the difference between posterior and the truth. Posterior output is from
the best case scenario (nS =34 and σm =0.005 ppm).
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Fig. 4. Left column shows the error in the posterior CO2 fluxes. Right column shows the fluxes being estimated.
Top row is the area source, middle row is the line source, and bottom row is the point source. Results are the
mean of a monte carlo analysis using 20 different combinations of sites. Contours are from the statistical models
η̂ (see Eq. 5–7) converted to flux errors and the red lines are the partial derivative of the statistical models with
respect to the number of sites, ∂η̂/∂ns (Eq. 8–10), that define the cutoff between the noise-limited and site-
limited regimes. Purple star shows an observing system with 25 sites and 1 ppm noise. Green star shows an
observing system with 3 sites and 0.1 ppm noise. Note the log-scale on the y-axis.

18

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-355, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 24 May 2016
c© Author(s) 2016. CC-BY 3.0 License.



0 24 48 72 96 120 144 168
Number of Hours Used

0.5

1

2

5

10

20

A
re

a 
So

ur
ce

 F
lu

x 
Er

ro
r (

tC
 h

r-1
)

Central Limit Theorem

Uncertainty aggregated in time
Mean
Range (1-σ)

Fig. 5. Uncertainty aggregated in time for the best case inversion (see Fig. 3). The CO2 flux estimate in this
study has an hourly temporal resolution. The uncertainty in the emissions estimate declines as the estimate is
averaged to longer temporal scales. Solid blue line is the mean uncertainty, shading is the 1-σ range, and the
dashed black line is the uncertainty predicted by the central limit theorem. Note the log scale on the y-axis.
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Table 1. 34 sites in the networka used in this study.

Site Code Site name
Latitude Longitude Height

(◦N) (◦W) (m a.g.l.)
AHS Arroyo High School 37.680 122.139 3
BEL Burckhalter Elementary School 37.775 122.167 5
BFE Bayfarm Elementary School 37.744 122.251 3
BOD Bishop O’Dowd High School 37.753 122.155 3
CES Claremont Elementary School 37.846 122.252 3
CHA Chabot Space & Science Center (low) 37.819 122.181 3
CHB Chabot Space & Science Center (high) 37.819 122.181 9
COI Coit Tower 37.8030 122.406 5
CPS College Preparatory School 37.849 122.242 24
EBM W. Oakland EBMUD Monitoring Station 37.814 122.282 3
ELC El Cerrito High School 37.907 122.294 8
EXB Exploratorium (Bay) 37.803 122.397 6
EXE Exploratorium (Embarcadero) 37.801 122.399 3
FTK Fred T. Korematsu Discovery Academy 37.738 122.174 3
GLE Greenleaf Elementary School 37.765 122.194 3
HRS Head Royce School 37.809 122.204 7
ICS International Community School 37.779 122.231 3
KAI Kaiser Center 37.809 122.264 127
LAU Laurel Elementary School 37.792 122.197 12
LBL Lawrence Berkeley National Lab, Bldg. 70 37.876 122.252 3
LCC Lighthouse Community Charter School 37.736 122.196 3
MAR Berkeley Marina 37.863 122.314 3
MON Montclair Elementary School 37.830 122.212 3
NOC N. Oakland Community Charter School 37.833 122.277 3
OMC Oakland Museum of California 37.799 122.264 3
PAP PLACE at Prescott Elementary 37.809 122.298 3
PDS Park Day School 37.832 122.257 3
PHS Piedmont Middle & High School 37.824 122.233 3
POR Port of Oakland Headquarters 37.796 122.280 3
OHS Oakland High School 37.805 122.236 3
ROS Rosa Parks Elementary School 37.865 122.295 3
SHA Skyline High School (low) 37.798 122.162 3
SHB Skyline High School (high) 37.798 122.162 13
STL St. Elizabeth High School 37.779 122.222 3

a This study uses both operational and proposed sites. See here for more information on the
network: “http://beacon.berkeley.edu/”.
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